SSCGuides
  • Home
  • NCERT Books
  • Class 10
    • NCERT Solutions for Class 10 Hindi
    • NCERT Solutions for Class 10 English
    • NCERT Solutions for Class 10 Maths
    • NCERT Solutions for Class 10 Science
    • NCERT Solutions for Class 10 Social Science
  • Class 11
    • NCERT Solutions for Class 11 Biology
    • NCERT Solutions for Class 11 English
    • NCERT Solutions for Class 11 Chemistry
    • NCERT Solutions for Class 11 Physics
    • NCERT Solutions for Class 11 Math
    • NCERT Solutions for Class 11 Economics
  • Class 12
    • NCERT Solutions for Class 12 Biology
    • NCERT Solutions for Class 12 English
    • NCERT Solutions for Class 12 Chemistry
    • NCERT Solutions for Class 12 Physics
    • NCERT Solutions for Class 12 Math
    • NCERT Solutions for Class 12 Economics
  • Study Materials
  • Essays

NCERT Solutions for Class 10 Math Chapter 2 – Polynomials

December 15, 2020 by Heerey Khan Leave a Comment

Polynomials Class 10 Maths NCERT Solutions NCERT Solutions for Class 10 Maths Chapter 2 Polynomials are part of NCERT Solutions for Class 10 Maths. Here we have given Maths NCERT Solutions Class 10 Chapter 2 Polynomials

Class 10 Maths NCERT Solutions Chapter 2 Polynomials

Question 1: The graphs of y = p(x) are given in following figure, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

(i)

(ii)

(iii)

(iv)

(v)

(v)

Answer:

(i) The number of zeroes is 0 as the graph does not cut the x-axis at any point.

(ii) The number of zeroes is 1 as the graph intersects the x-axis at only 1 point.

(iii) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

(iv) The number of zeroes is 2 as the graph intersects the x-axis at 2 points.

(v) The number of zeroes is 4 as the graph intersects the x-axis at 4 points.

(vi) The number of zeroes is 3 as the graph intersects the x-axis at 3 points.

Question 1: Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Answer:

The value of is zero when x − 4 = 0 or x + 2 = 0, i.e., when x = 4 or x = −2

Therefore, the zeroes of are 4 and −2.

Sum of zeroes = 

Product of zeroes 

The value of 4s2 − 4s + 1 is zero when 2s − 1 = 0, i.e.,

Therefore, the zeroes of 4s2 − 4s + 1 areand.

Sum of zeroes = 

Product of zeroes 

The value of 6x2 − 3 − 7x is zero when 3x + 1 = 0 or 2x − 3 = 0, i.e., or

Therefore, the zeroes of 6x2 − 3 − 7x are.

Sum of zeroes = 

Product of zeroes = 

The value of 4u2 + 8u is zero when 4u = 0 or u + 2 = 0, i.e., u = 0 or u = −2

Therefore, the zeroes of 4u2 + 8u are 0 and −2.

Sum of zeroes = 

Product of zeroes = 

The value of t2 − 15 is zero when  or , i.e., when 

Therefore, the zeroes of t2 − 15 are  and.

Sum of zeroes =

Product of zeroes = 

The value of 3x2 − x − 4 is zero when 3x − 4 = 0 or x + 1 = 0, i.e., when  or x = −1

Therefore, the zeroes of 3x2 − x − 4 are and −1.

Sum of zeroes = 

Product of zeroes 

Question 2: Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.

Answer:

Let the polynomial be , and its zeroes be and .

Therefore, the quadratic polynomial is 4x2 − x − 4.

Let the polynomial be , and its zeroes be and .

Therefore, the quadratic polynomial is 3x2 − x + 1.

Let the polynomial be , and its zeroes be and .

Therefore, the quadratic polynomial is .

Let the polynomial be , and its zeroes be and .

Therefore, the quadratic polynomial is .

Let the polynomial be , and its zeroes be and .

Therefore, the quadratic polynomial is .

Let the polynomial be .

Therefore, the quadratic polynomial is.

Question 1: Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:

(i) 

(ii) 

(iii) 

Answer:

Quotient = x − 3

Remainder = 7x − 9

Quotient = x2 + x − 3

Remainder = 8

Quotient = −x2 − 2

Remainder = −5x +10

Question 2: Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

Answer:

 = 

Since the remainder is 0,

Hence,  is a factor of .

Since the remainder is 0,

Hence,  is a factor of .

Since the remainder ,

Hence,  is not a factor of .

Question 3: Obtain all other zeroes of , if two of its zeroes are .

Answer:

Since the two zeroes are ,

is a factor of .

Therefore, we divide the given polynomial by .

We factorize 

Therefore, its zero is given by x + 1 = 0

x = −1

As it has the term , therefore, there will be 2 zeroes at x = −1.

Hence, the zeroes of the given polynomial are, −1 and −1.

Question 4: On dividing by a polynomial g(x), the quotient and remainder were x − 2 and − 2x + 4, respectively. Find g(x).

Answer:

g(x) = ? (Divisor)

Quotient = (x − 2)

Remainder = (− 2x + 4)

Dividend = Divisor × Quotient + Remainder

g(x) is the quotient when we divide by

Question 5: Give examples of polynomial p(x), g(x), q(x) and r(x), which satisfy the division algorithm and

(i) deg p(x) = deg q(x)

(ii) deg q(x) = deg r(x)

(iii) deg r(x) = 0

Answer:

According to the division algorithm, if p(x) and g(x) are two polynomials with

g(x) ≠ 0, then we can find polynomials q(x) and r(x) such that

p(x) = g(x) × q(x) + r(x),

where r(x) = 0 or degree of r(x) < degree of g(x)

Degree of a polynomial is the highest power of the variable in the polynomial.

(i) deg p(x) = deg q(x)

Degree of quotient will be equal to degree of dividend when divisor is constant ( i.e., when any polynomial is divided by a constant).

Let us assume the division of by 2.

Here, p(x) = 

g(x) = 2

q(x) =  and r(x) = 0

Degree of p(x) and q(x) is the same i.e., 2.

Checking for division algorithm,

p(x) = g(x) × q(x) + r(x)

= 2()

= 

Thus, the division algorithm is satisfied.

(ii) deg q(x) = deg r(x)

Let us assume the division of x3 + x by x2,

Here, p(x) = x3 + x

g(x) = x2

q(x) = x and r(x) = x

Clearly, the degree of q(x) and r(x) is the same i.e., 1.

Checking for division algorithm,

p(x) = g(x) × q(x) + r(x)

x3 + x = (x2 ) × x + x

x3 + x = x3 + x

Thus, the division algorithm is satisfied.

(iii)deg r(x) = 0

Degree of remainder will be 0 when remainder comes to a constant.

Let us assume the division of x3 + 1by x2.

Here, p(x) = x3 + 1

g(x) = x2

q(x) = x and r(x) = 1

Clearly, the degree of r(x) is 0.

Checking for division algorithm,

p(x) = g(x) × q(x) + r(x)

x3 + 1 = (x2 ) × x + 1

x3 + 1 = x3 + 1

Thus, the division algorithm is satisfied.

Question 1: Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

Answer:

(i) 

Therefore, , 1, and −2 are the zeroes of the given polynomial.

Comparing the given polynomial with , we obtain a = 2, b = 1, c = −5, d = 2

Therefore, the relationship between the zeroes and the coefficients is verified.

(ii) 

Therefore, 2, 1, 1 are the zeroes of the given polynomial.

Comparing the given polynomial with , we obtain a = 1, b = −4, c = 5, d = −2.

Verification of the relationship between zeroes and coefficient of the given polynomial

Multiplication of zeroes taking two at a time = (2)(1) + (1)(1) + (2)(1) =2 + 1 + 2 = 5 

Multiplication of zeroes = 2 × 1 × 1 = 2 

Hence, the relationship between the zeroes and the coefficients is verified.

Question 2: Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, − 7, − 14 respectively.

Answer:

Let the polynomial be and the zeroes be .

It is given that

If a = 1, then b = −2, c = −7, d = 14

Hence, the polynomial is .

Question 3: If the zeroes of polynomial  are, find a and b.

Answer:

Zeroes are a − b, a + a + b

Comparing the given polynomial with , we obtain

p = 1, q = −3, r = 1, t = 1

The zeroes are .

Hence, a = 1 and b =  or .

Question 4: It two zeroes of the polynomial  are, find other zeroes.

Answer:

Given that 2 + and 2­­ are zeroes of the given polynomial.

Therefore, = x2 + 4 ­­− 4x − 3

= x2 ­− 4x + 1 is a factor of the given polynomial

For finding the remaining zeroes of the given polynomial, we will find the quotient by dividing  by x2 ­− 4x + 1.

Clearly, = 

It can be observed that is also a factor of the given polynomial.

And = 

Therefore, the value of the polynomial is also zero when or 

Or x = 7 or −5

Hence, 7 and −5 are also zeroes of this polynomial.

Question 5: If the polynomial  is divided by another polynomial, the remainder comes out to be x + a, find k and a.

Answer:

By division algorithm,

Dividend = Divisor × Quotient + Remainder

Dividend − Remainder = Divisor × Quotient

 will be perfectly divisible by .

Let us divide  by 

It can be observed that will be 0.

Therefore, = 0 and = 0

For = 0,

2 k =10

And thus, k = 5

For = 0

10 − a − 8 × 5 + 25 = 0

10 − a − 40 + 25 = 0

− 5 − a = 0

Therefore, a = −5

Hence, k = 5 and a = −5

Join Telegram Group
Join our Facebook Group
Disclaimer
Disclaimer: SSCGuides.com does not own this book, neither created nor scanned. We just providing the link already available on internet. If any way it violates the law or has any issues then kindly Contact Us. Thank You!

Filed Under: NCERT Solutions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recent Posts

  • NCERT Solutions for Class 11 Physics Chapter 4 – Motion in a Plane
  • NCERT Solutions for Class 11 Physics Chapter 3 – Motion in a Straight Line
  • NCERT Solutions for Class 11 Physics Chapter 2 – Units and Measurements
  • NCERT Solutions for Class 11 Physics Chapter 1 – Physical World
  • NCERT Solution for Class 12 Macroeconomics – Open Economy Macroeconomics

Site Links

  • About
  • Contact
  • Privacy Policy
  • Sitemap

Copyright © 2021 SSCGuides - All Rights Reserved.